

Kinematic slip model for 12 May 2008 Wenchuan Beichuan Mw 7.9 earthquake from joint inversion of ALOS, Envisat & Teleseismic

Eric Fielding

Jet Propulsion Laboratory, California Institute of Technology*

Anthony Sladen, Jean-Philippe Avouac

Caltech

Zhenhong Li

COMET, Univ. Glasgow

lsabelle Ryder, Roland Bürgmann

UC Berkeley

Wenchuan-Beichuan earthquake

- eastern Sichuan province
- 12 May 2008, Mw 7.9
- >70,000 fatalities
- epicenter at SW end-
- surface ruptures 250 km along mountain front
- steep Longmen Shan mountains at east edge of Tibetan plateau

Geomorphic mapping

Active faults mapped before earthquake

Densmore et al., Tectonics, 2007

ALOS PALSAR range offsets

ALOS PALSAR interferometry

- six paths cover rupture, plus two at ends
- ROI_pac processing & SNAPHU unwrapping
- coherence lost in steep slopes with longer baselines, and where displacements large
- artifact waves cause up to 1 m of range change variations

Envisat IM interferometry

- three descending tracks in image mode (strip map)
- long time intervals and baselines
- poor coherence except in plains, less steep mountains
- vertical and horizontal motion add

Envisat ScanSAR

- WS mode pairs acquired on three tracks
- Track 476 pair best baseline and burst sync.
- 2007/07/15-2008/06/29
- low coherence but fringes after strong smoothing

Joint GPS-InSAR inversion (static)

six PALSAR
 ascending, three
 ASAR descending

Five fault segments

 Beichuan fault dipping at 33° (south) and 51° (north)

 Hanwang faults dipping at 20°

coseismic GPS from CMONOC (black 30°N and gray arrows) 102°E

Joint GPS-teleseismic inversion (kinematic)

Joint GPS-teleseismic inversion

- animation of cumulative slip
- total slip at each second of rupture model
- quasi-staticdisplacements atGPS stations
- played at four times faster than real time

Joint GPS-teleseismic inversion

- 8 s delay from 1st to 2nd rupture
- early slip nearly pure thrust
- later slip much more strike-slip

- most slip shallow <10 km, except near Wenchuan & NE
- landslides of Beichuan area over largest slip

Conclusions

- Beichuan fault system was main rupture, with rotation of slip: thrust to right-lateral from SW to NE
- Hanwang fault in Pengguan fault system had large thrust motion, shallow block near Xiaoyudong also had large lateral motion
- Joint inversions with InSAR, GPS, and teleseismic combine time and space constraints on kinematics
- InSAR angle diversity necessary for understanding complex rupture
- SAR pixel offsets map near-fault large deformations and surface ruptures